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Dynamics of Oscillators with Periodic 
Dichotomous Noise 

Raymond Kapral 1 and Simon J. Fraser 1 

The dynamics of bistable oscillators driven by periodic dichotomous noise is 
described. The stochastic differential equation governing the flow implies 
smooth trajectories between noise switching events. The dynamics of the two- 
branched map induced by this flow is a Markov process. Harmonic and quartic 
models of the bistable potential are studied in the overdamped limit. In the 
linear (harmonic) case the dynamics can be reduced to a stochastic one-dimen- 
sional map with two branches. The moments decay exponentially in this case, 
although the invariant measure may be multifractal. For strong damping, 
relaxation induces a cascade leading to a Cantor set and anomalous decay of 
the density in this case is modeled by a Markov chain. For the physically more 
realistic case of a quartic potential many additional features arise since the 
contraction factor is distance dependent. By tuning the barrier-height parameter 
in the quartic potential, noise-induced transition rates with the characteristics of 
intermittency are found. 

KEY WORDS: Stochastic differential equations; Markov chains; stochastic 
nonlinear maps; forced oscillators. 

1. I N T R O D U C T I O N  

I t  is a w e l l - k n o w n  fact  tha t  n o n l i n e a r  osc i l l a to rs  wh ich  are  sub jec t ed  to 

pe r iod i c  o r  r a n d o m  d r iv ing  forces  can  d i sp lay  c o m p l e x  d y n a m i c s  wi th  

u n u s u a l  features .  B o t h  pe r iod i ca l l y  fo rced  n o n l i n e a r  osc i l l a to rs  a n d  

osc i l l a to rs  wi th  r a n d o m  whi te  o r  c o l o r e d  no i se  sources  h a v e  been  s tud ied  

in a va r i e ty  of  con t ex t s  (see, e.g., ref. 1). S t o c h a s t i c  r e s o n a n c e  (2) is an  

e x a m p l e  whe re  b o t h  pe r iod i c  a n d  s tochas t i c  e l emen t s  c o m b i n e  to give rise 

to  n e w  d y n a m i c a l  features .  
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A rather simple class of randomly perturbed oscillators is studied in 
this paper. We consider dynamical systems described by the equation of 
motion 

aV(x(t); v(t)) 
m2(t) = -~2(t)  (1) 

dx( t ) 

or, in the overdamped limit, 

2(t) = _ ~ - 1  dV(x(t);  v(t)) _ F(x(t); v(t) ) (2) 
ax(t) 

Here m is the mass of the "particle" and ~ is the friction coefficient. 
The potential V(x; v(t)) is governed by a periodic dichotomous noise 

process on a parameter v(t) that determines the form of the potential 
function. More specifically, v(t) is given by 

v(t)= ~ v(n) O(t--nz)O((n+l)r--t), 
n = O  

t~>o (3) 

where {v(n), n=0, . . . ,oo} are independent random variables with 
probabilities such that P(v(n) = Vo) = p and P(v(n) = vl) = 1 - p = q, Vn, 
and O(x) is the Heaviside function. Note that in this noise process we set 
the zero of time at the instant of switching. The noise is correlated over the 
time interval ~ and has correlation function 

~ ( p v ~ + q v  2) for t~<r 
(v ( t )  v ( O ) ) = [ ( P v o + q v j ) 2  for t > r  (4) 

This noise process is easily implemented by choosing the parameters Vo and 
v 1 with probabilities p and q, respectively, at fixed time intervals z. Thus, 
like stochastic resonance, the noise process combines random and periodic 
elements and gives rise to interesting dynamical behavior which is 
amenable to experimental test. O'4) 

The periodic element in the dynamics allows an analysis in terms of 
discrete-time maps. The equations of motion, Eq. (1) or (2), may be 
integrated over the time interval r to yield a stochastic map. We restrict 
our study to overdamped dynamics. Integration of Eq. (2) yields 

f 
t + z  

x( t  + ~) = x( t )  + dt' V(x(t ' ) ,  v(t '))  (5 / 
t 

x( t  + r) = ~f~(x( t ) ,  Vo) = f~o(X(t)), prob. p 
( f ~ ( x ( t ) ,  vl)=-f~(x(t)), prob. q 

(6) 
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This stochastic map captures the essential features of the stochastic 
differential equation (2). Random walks on a lattice with disorder have 
also been described by random maps of the type considered here. (5~ 

For  random switching between two harmonic potentials, our 
dynamical system, with strong damping, reduces to a stochastic linear 
one-dimensional map (3'4) Its two branches f~  and f~ are defined by 

f~o: x(t + ~) = fix(t), prob. p 

f ]  : x(t + r) = 1 - fi + fx(t) ,  prob. q 
(7) 

where f i=exp(-mco~r /~)  with co the oscillator frequency. We sketch the 
mathematical history of this system because it shows how an infinitely 
recursive mathematical structure (6) can appear as an interesting new model 
in physics. 

The dynamical process (7) on the unit interval was studied by mathe- 
maticians under the name "Bernoulli convolution. ''(7) Erd6s and Salem 
showed that the invariant measure m* of this process could have surprising 
properties, and even now the behavior of m* for fie [1/2, 1] is not fully 
understood. (8) For  example, for p =  1/2, if fi is a reciprocal Pisot-  
Vijayaraghavan (PV) number (9) m* is purely singular (7'1~ i.e., the 
Lebesgue measure of the set on which the "mass" of the system is even- 
tually concentrated is zero, but this set is dense, so that the graph of m* 
increases continuously on this dense measure-zero set. (A PV number is an 
algebraic integer all of whose conjugates lie inside the unit circle in the 
complex plane.) Commonly a histogram of the corresponding coarse- 
grained "invariant" density is displayed to reveal the self-similarity of this 
structure, although, rigorously speaking, an invariant density does not exist 
in such cases. 

The properties of m* are far easier to grasp in the Cantor-set 
regime, (3) f ie(0 ,1/2) ,  and at f i= l /2 ,  where m* is either absolutely 
continuous for p = 1/2 or a binomial multifractal (u~ for p # 1/2. 

For  fie (0, 1/2) and p ~  (0, 1) the support of m* is the nowhere-dense 
Cantor set %~ with similarity ratio fi and m* is purely singular. The graph 
of m*(x; 2, p) is constant on the intervals corresponding to the gaps in the 
construction of cgx, Since cg~ has zero Lebesgue measure, the graph of m* 
has zero derivative (and therefore vanishing density) almost everywhere in 
[0, i ]. Indeed, the decimation construction has a dynamical analog, as we 
shall see. This simple Cantor Set structure should be contrasted with the 
graph of m* for f is(1/2,  1), which contains no intervals on which it is 
constant, even when m* is purely singular and therefore concentrated on a 
dense measure-zero set. 

822/70/1-2-5 
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In this article we examine properties of the invariant measure and 
relaxation dynamics for the system (2) when the potential is either a 
quadratic or quartic polynomial. In Section 2 we focus on the relaxation 
dynamics of the system with a harmonic potential. The relaxation proper- 
ties are shown to be anomalous when viewed as discrete-state Markov 
process. Section 3 is devoted to the case where the potential is a quartic 
polynomial. We show how the invariant measure changes as a result of the 
nonlinear character of the stochastic map and describe noise-induced 
transition rate processes that arise from the nonlinear nature of the 
restoring force. Section 4 contains a discussion of the results. 

2. H A R M O N I C  POTENTIAL 

In the Introduction we outlined some of the unusual properties of m* 
for the system with a harmonic potential. The properties of m* in the 
Cantor-set regime make it interesting to study the relaxation toward its 
purely singular equilibrium. This type of relaxation cascade is similar to 
recent models of turbulence using random multiplicative processes (12) and 
imitates the way "pre-fractals" arise in Mandelbrot's explanation of the 
properties of multifractal measures. 

The relaxation dynamics for the map (7) is formally described by the 
Perron-Frobenius (PF) equation 

f 
~ 

p(x, t + T ) =  dy {p6(x-f~o(y))+q6(x-f[(y))} p(y, t) 
- - o o  

(8) 

This discrete-time functional evolution equation implies the compression of 
the density p by factor 2 to the left (with prob. p) and to the right (with 
prob. q). As indicated by the earlier discussion, this equation may not 
converge to a well-defined invariant density p*, but an invariant measure 
m*(x; 2, p) always exists, as shown by Karlin. (7) Therefore the measure 
m(x, t) evolving from any smooth initial p(x, 0) approaches m*(x; 2, p) as 
t --* o0 .  

2.1. Decay of Moments 

Consider the time evolution of the moments 

( x ~ " ) ( t )  = clx xmp(x, t) 
- - 0 9  

(9) 
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under Eq. (8) when p(x, 0) has support [0,  1]. This immediately gives 

so that higher moments are coupled to lower ones. From Eq. (10) it 
follows that the first moment decays to its asymptotic value q with decay 
constant 2: 

( x ) ( t  + r ) -  q = 2{ (x ) ( t ) -  q} (11) 

Similarly, the mth-order cumulant decays to its asymptotic value with 
decay constant 2 m. Thus, the decay of moments in this system is exponen- 
tial, regardless of any singular structure m*(x; )~, p) might have. z 

2.2,  M a r k o v  C h a i n  M o d e l  

Although the moments in this system decay normally, the density p 
shows anomalous relaxation behavior. The anomalous decay is best 
illustrated by a discussion of the Cantor-set regime, where the argument is 
clear. 

The decimation process that generates %~ also imitates the way density 
is swept out of the gaps at every iterate of the integral equation (8). This 
dynamics corresponds to a semigroup whose abstract structure arises from 
the decimation construction. Thus we can model this relaxation cascade 
by a hierarchy of finite Markov chains up to some chosen decimation 
level l, say. Each Markov chain in this cascade captures features of the 
relaxation in the decimation hierarchy. However, if we choose a definite 
value of l, it is impossible to represent the gap relaxation corresponding to 
previous levels because the semigroup structure of the relaxation dynamics 
manifests itself as defectiveness in the eigensystem of the Markov chain 
representation. We now formally examine the recursion leading to a par- 
ticular decimation level/. 

States in the chain are of two types: gap states ff and support states Y, 
i.e., sets in which the mass must eventually reside. There are three kinds 
of allowed transition: ~ --, ~, fr ~ 5 P, and 5 p ~ J .  The recursive construc- 
tion of ~;~ allows the eigensystem of the Markov chain to be defined 
completely. Starting from ~0 = { ~ }  with ~ =  [0, 1], the partition ~+1 
can be generated from ~ according to the recursion 

~+~ = { f ; ( ~ ) ,  ~2'+', f ~ ( ~ ) }  (12) 

2 We thank J. Piasecki and M. Moreau for communications concerning the eumulant 
generating function in this case. 
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where the set of f~ (~ t )  are renumbered by adding 2 t+l. Using this 
procedure, the ( 2 t + 1 - 1 )  interlaced 5e and f# intervals (states in the 
discrete Markov chain) of ~ are numbered consecutively, i.e., 

~ ,=  { ~ ,  92, ~ ..... ~2,+1 2, ~,+~-~} (13) 

The stochastic matrix PI for the Markov chain will be written with row 
sum equal to one, so that the "physical" eigenvectors are (left) row vectors. 
Transitions to the left have probability p and those to right have 
probability q. Because of the decimation defining %~, p and q occur either 
singly or in vertical triplets in the (2 l+1 - 1)x  (2 l+a - 1) stochastic matrix 
PI ( />  0), and this can be constructed as follows. To fill in the p entries, 
start at row 1, column 1: 

$1. Write a column of p's for 3 rows; from last entry, move 1 column 
to the right and 1 row down. 

$2. Write one (column) p for one row; from last entry, move 1 
column to the right and 1 row down. 

Repeat S1, then $2, until every row of PI has a single p entry. To fill in the 
q entries, start at row 1, column 2l+ 1. Now use S1 and $2 (with q instead 
of p) until every row of Pj has a single q entry. All other entries of P1 are 
0. The sparse structure of P~ means that all the rows of (p~)l-~ equal the 
equilibrium eigenvector n* (below). This linear dependence implies (PI) l -  
has eigenvalues # = 1 and # = 0, with multiplicity (2 l + ~ -  2), but since l is 
finite, these are also the eigenvalues of Pt. 

The underlying decimation defining %. also allows the equilibrium and 
relaxation eigenvectors of PI to be defined recursively as follows: 

1. Using 7r* = (1) belonging to # = 1 for P0 = 1 as initialization, the 
equilibrium eigenvector ~*+~ is defined recursively in terms of re* 
by rc*+l=(pzc*,0, qrc*), where each occurrence of 7z* is a row 
vector of 2 l + ~ -  1 elements, making rc~'+ t a row vector of 2 l + 2 -  1 
elements. Note that re* has 2 t positive entries interlaced with 2 l -  1 
zeros. 

2. All the relaxation eigenvectors for Pt+~ belonging to # = 0 can be 
obtained from n* by the following substitution: Any positive 
element in n* is replaced by the triplets (1, 0, - 1 )  or (1, - 2 ,  1) 
and every other occurrence of a positive element is replaced by the 
zero triplet (0, 0, 0). Since there are 2 l positive entries in nt*, we 
obtain 2 l+~ linearly independent eigenvectors all belonging to 
# = 0 .  

A crucial point of this construction, which derives all possible null-space 
eigenvectors for P~+~ from the preceding equilibrium ~*, is that the eigen- 
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system for every l >  1 is defective. For P~, which has dimension U + 1 -  1, 
we can write 

defect~ = (2 ~+ 1 - 1 ) - 2 z -  1 = 2 l -  2 (14) 

where the subtracted terms on the right correspond to the dimensions of 
the subspaces spanned by the # - - 0  and /~ = l eigenvectors. The number 
defect~ counts those gap states appearing early in the decimation hierarchy 
for ~f~, whose (density) relaxation dynamics c a n n o t  be represented in the 
eigenbasis. It is only the final step of the density relaxation that can be 
represented in this eigenbasis. Since it can take as many as l steps to reach 
equilibrium for the defective matrix Pt, relaxation is slow because/~ = 0 is 
the only relaxation eigenvalue. 

However, there is a further paradoxical feature of this Markov chain 
picture: Suppose that an initial state is represented in the natural basis on 
the gap state hierarchy; we know that such an initial state cannot be 
represented in the eigenbasis of Pz. Nevertheless, the decay of the moments, 
using the centroids of the gaps as weights, from such gap states lying 
entirely outside the eigenspace can be faithfully represented until the first 

~ 5  ~ transition is made, i.e., until the eigenspace is reached. 
This anomalous relaxation for the Markov-chain model in the Cantor- 

set regime suggests similar anomalies in the eigenspace of the PF operator 
even on arbitrarily small length scales. Only if the system is "noisy," so that 
there is a finite inner length scale, can the usual kind of relaxation or 
equilibrium eigenvectors be constructed, and even then the eigensystem is 
defective. 

3. Q U A R T I C  P O T E N T I A L  

A more realistic and commonly used potential model for the study of 
noise-induced rate processes is the quartic potential 

1 4 ~ 2 
V ( x ) = - ~  x - ~  x - vx  (15) 

In this section we study the overdamped motion of a particle in this 
potential subject to periodic dichotomous noise on the parameter v. The 
physical situation we wish to study is depicted in Fig. 1, which shows two 
potential functions corresponding to vo = - v  and v 1 = v. The value of v is 
chosen to be sufficiently large that each potential function possesses a 
single extremum and the periodic dichotomous noise process induces 
transitions between the two potential branches. 
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Fig. 1. Sketch of the potential function V(x; ~, v) for ~ = 0.5 and Vo, ~ = __+2.8. 

The general overdamped equation of motion is given in Eq. (2) and 
for the quartic potential takes the specific (scaled) form 

dx(t) = _x(t)3 + ex(t) + v(t) (16) 
dt 

Integration of this equation over the time interval z yields the stochastic 
map 

x(t + r) = ~ C~(x(t)' v~ prob. p 
(C~(x(t), vl), prob. q 

(17) 

AS in Sections 1 and 2, we use the notation C*(x, vi) = C~(x) (i = 0, 1). The 
integration in passing from Eq. (16) to Eq. (17) can be carried out to 
obtain a transcendental equation for x(t + ~) given x(t): 

1 3 x(t  + ~ ) -  x~ i) 
~ = - ~ - ~  Z a~ i) ln x(t)_x~i) (18) 

j = l  

(0 ( j =  1, 2, 3) are the roots of the cubic polynomials, Here xj 
- x 3 + e x + v i = O  ( i=0 ,  1), and 

3 
A ( i ) =  E v(i)~c(i) (x~ i ) - v ( i )  ~ ( 1 9 )  

~ j  ~ j +  1 ~ j +  1! 
j = l  

and 

(i) _ ~.(i) _ ~(i) (20) aj - -  J . j +  1 ~ i + 2  
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where the subscript addition is carried out modulo 3. In the remainder of 
this section we shall focus attention on the symmetric case depicted in 
Fig. 1, where vl = v = -Vo, so that x~~ -x~  1)= - x  s, A (~ = - A  ~ =  - A ,  
and as(.~ for j =  1, 2, 3. In this case the two maps C~(x) take a 
simpler form and are defined implicitly by 

3 X(T) "~ Xj 
C;: z = - A  -1 Y" ajln 

j =  ~ x ( O )  + x s 
( 2 1 )  

3 X("f ) -- Xj 
c ;  . , = - A - ~ E aj  ln  =rs- ,  ; - :  

j = l  

2 . 5  i l i i 
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0.5 
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(b) 
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tl 
Fig.  2. (a)  The two map branches C~o,l(x) versus x for the parameter set of  Fig.  1, 

r = z 2 = 0 .31967268.  Also shown is the period-two E P O .  (b)  Histogram h(x) constructed from 
a t r a j e c t o r y  o f  6.26 x 10 s points in 2000 bins. 
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Fig. 3. Coarse-grained invariant density for the quartic potential. The abscissa is the interval 
[ -  x l, x l ], where x 1 = 1.52745400, and the ordinate is the interval [0.1, 1.1 ]. The normalized 
density decreases from black (one) to white (zero). 

These are the basic mapping equations used in this study. 3 The 
discrete-time maps C; and C~ are shown in Fig. 2a for e = 0.5, v = 2.8, the 
same potential parameters as Fig. 1, and z = 0.3196727. To fix the notation, 
we denote the rightmost real fixed point of C~ as xl while by symmetry the 
leftmost real fixed point of C; is - x l .  

An overview of the dynamical structure can be obtained from an 
examination of the coarse-grained density in Fig. 3. To construct this 
figure, the interval I - x 1 ,  x l ]  was divided into 500 segments of equal 
length. The coarse-grained density on these segments was determined from 
the values of x(nz) ( n=  1 ..... T/z) along a stochastic trajectory of length 
T =  20,000. Results for 500 z values in the range [0.1, 1.1] are shown. 

The coarse-grained density is highly structured and some of its 
features are similar to those observed in the linear map case. The gross 
structure of this density is controlled by a few simple dynamical processes. 
Because of the flat regions of the map branches Co,~ there is a strong 
focusing of the map iterates near the fixed points ~-x~, respectively. As a 
result, the prominent features of the density can be attributed to the 

3 In carrying out some of the calculations we have found it convenient to integrate 
numerically Eq. (16) over the time interval z instead of solving the nonlinear equation (21). 
However, Eq. (21) is useful in the theoretical analysis and in the determination of periodic 
orbits. 
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mapping of the endpoints _+xl into the interior under simple sequences of 
iterates. Consider a sequence {il, i2 ..... in}, ice {0, 1}, where i = 0  refers 
to iteration under C~ while i =  1 corresponds to C~. Sequences beginning 
with 0 have initial value x ( 0 ) = x  1, while those that begin with 1 
have x(0) = - x  1. Figure 4 shows plots of x ( n z )  as a function of z for the 
sequences { i~ , i2 , . . . , in} ,  ik=0,  Vk, n=l , . . . ,5 ,  and { i~ , i2 , . . . , in} ,  i~=1,  
Vk, n = 1 ..... 5. These are shown as two sets of solid lines in the figure. 
Also shown as dotted lines are the sequences {011}, {010}, {001} and 
{100}, {101}, {110}. The sets of solid and dotted lines form the skeleton 
of the prominent high-density regions in Fig. 3. 

The crossing points of these skeletal lines correspond to high-density 
regions. The crossing points can be found by identifying the sequences of 
iterates discussed above. The first central crossing point is determined by 
the condition {0~} = {1} [x (~ )=0 ]  or 

3 
~ c = - A  -1 ~ ajln x~ (22) 

j = l  Xl-~- XJ 

Above z c = 0.4846155, 

CZOe([--XI, X l ]  ) U C~c([--Xl, x 1 ]  ) c ~ - - X l ,  X l  ] 

and the "density" is defined on a Cantor set with many length scales due 
to the nonlinear character of the map. This region is the analog of the 
Cantor-set region of the linear map case. 

Other prominent crossing points correspond to central periodic orbits 
(CPOs). (3'4) For example, the outermost crossing points of the solid 
skeletal lines in Fig. 4 are determined by the conditions {00.--0} = {1 } 

1.1 

0.9 

0.7 

T 

0.,5 

0.3 

0.I 
-1.0 0.0 1.O 

Z 

Fig. 4. Iterates of the fixed points as a function of z form the skeleton of the coarsed-grained 
density. 
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and { 1 1 - - . 1 } = { 0 } .  These conditions correspond to ihe existence of 
period-2n CPOs where the orbit is composed on n steps on the map branch 
C; and n steps on C~. The endpoints of the interval are mapped into the 
extreme points of the orbit forming a period-2n eventually periodic orbit 
(EPO). The conditions for the existence of such orbits can be determined 
from 

3 * 

n'c,, = - A  - 1 ~ aj In xj - x .  (23) 
j=~ x~ + xj  

3 , 

~ . =  _ A _  1 ~ ailnX.__+ xj  (24) 
j=~ x l  + x j  

Here x* is one of the fixed points of the period-2n orbit. The solutions of 
this equation are given in Table I up to n = 7. The orbit endpoints tend to 
+_x~ and % tends to zero as n --* oo. As an illustration, the period-2 CPO 
is shown in Fig. 2a and the coarse-grained density in Fig. 2b. In contrast to 
the linear force case, the period-2 CPO is unstable and the map supports 
two stable period-2 orbits. However, it is the unstable CPO that controls 
the structure of the density due to the strong focusing of the map iterates 
near the endpoints of the interval. Notice the sharp maxima in the coarse- 
grained density at the fixed points of the period-2 orbit. 

Another prominent family or orbits, referred to as the first family, (3'4) 
corresponds to crossings of the skeletal lines determined by the sequences 
{ 0 1 1 . . - 1 0 } = { 1 }  and { i 0 0 . . . 0 1 } = { 0 } .  The period-4 orbit occurs at 

=0.454135340 for 5=0.5  and v=2 .8  with orbit elements x~,2*-- 
+_0.084702127 and x3,4" = +1.2402225._ The orbit elements closest to the 
origin correspond to the two skeletal solid and dotted line intersections just 
below the central crossing point {0} = {1 } in Fig. 4. 

Table I 

Ft Xn* T n 

2 0.44698169 0.31967268 
4 0,66656365 0.23836488 
6 0.80090514 0.19090774 
8 0.89369945 0.15982931 

10 0.96261251 0.13785489 
12 1.01629304 0.12146009 
14 1.05954805 0.10873546 
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3.1. Noise-Induced Transitions 

The parameters can be tuned so that the system is confined for long 
periods of time to the left and right of x = 0. In this circumstance "species" 
s v corresponding to the system in the left and right well can be identified 
and the characteristic relaxation times for the populations of these species 
can be computed. 

One way to achieve slow leaking between the two halves of the phase 
space is to bring the two map branches near to tangency with the bisectrix. 
This case is illustrated in Fig. 5a for p = 1/2. Map iterates on the upper 
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Fig. 5. (a) M a p  branches  for a p a r a m e t e r  set near  t angent  bifurcat ion:  e = 3, v = 2.2, and  
r = 0.3. (b) H i s t o g r a m  cons t ruc ted  from a t ra jec tory  of 6.26 x 105 poin ts  in 2000 bins. 
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(lower) branches will be closely spaced in tt~e vicinity of the tangent point 
at negative (positive) x values. Stochastic transitions to the lower (upper) 
branch will result in phase points being mapped close to the fixed points 
at - x l  (xl), since the lower (upper) map branches are relatively flat near 
these fixed points. Transitions between s+ and s can occur only through 
long sequences {00 . . .0}  or {11.--1} since the system must pass through 
the narrow channel regions near the tangent points. Thus, a minimum 
number of steps on a given map branch is required for transition. When a 
noise-induced hop to the other map branch occurs the phase point will be 
reinjected into the vicinities of +_xl. This reflux process continues until 
passage through the channel occurs. The transition mechanism bears some 
similarity to intermittency. 

The coarse-grained density constructed from the dynamics on the 
maps in Fig. 5a is shown in Fig. 5b. Sharp spikes in the density are seen at 
points corresponding to the deterministic steps through the channels near 
the tangent points of the upper (lower) map branches with the bisectrix. 
There are also images of these channel walks near the fixed points T x l  
produced by the mappings on the lower (upper) map branches. While the 
results presented in the figure show the effects of the finite relaxation time 
of the transitions between the left and right portions, it is clear that roughly 
one quarter of the density lies in each of the endpoint and tangent regions. 
Furthermore, the heights of the peaks decrease by a factor of two as 
iterates march through the channel, as expected, since there is a probability 
of one half of transition to the other map branch. 

The probability density P(tzp) of first passage times tip from 
x(0) = - X l  to x(tip ) >~ O, with x ( t i p -  z ) <  0, is shown in Fig. 6. Apart from 
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Fig. 6. Probability density function P(tfp) for first passage time trp from the fixed point 
x(0) = -x  I = -2.0219013 to X(tr~ ) >~ O, with X(trp-~) <0, for the parameter set in Fig. 5. 
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fluctuations, the exponential form of P is evident, which is consistent with 
the uncorrelated character of the underlying stochastic process. However, 
starting from - x ~ ,  a minimum of 12 steps is required to reach x =  0. The 
mean first passage time (tfp)= 24,61%. 

This brief examination of the transition process reveals a number of 
interesting features. The equilibrium state has a markedly discrete charac- 
ter, with mass dispersed in a roughly geometrical progression toward the 
species dividing point x = 0. Decay from this type of distribution requires 
a new type of transition rate theory. 

4. D I S C U S S I O N  

We have described a class of stochastic differential equations that, for 
a quartic potential in the overdamped limit, reduces to a two-branched 
nonlinear map in which each branch is a diffeomorphism. To gain insight 
into the dynamics, we have also analyzed a linear map corresponding to an 
underlying harmonic potential. 

The linear model (with constant contraction factor 2) has been studied 
in the past for p = 1/2; it is known to produce purely singular (multifractal) 
measures on a self-similar Cantor set when the images of [0, 1] under the  
map branches do not overlap. A Cantor set structure is also produced in 
the nonlinear map if the branches do not "overlap" but now the Cantor set 
has nonconstant similarity ratio. 

When the map branches overlap, a purely singular invariant measure 
m* can arise in the linear case; this is known to occur when the 2 is a 
reciprocal PV number. We have shown that such cases are also associated 
with eventually periodic orbits. Similarly, in the nonlinear case these EPOs 
organize the structure of m*, but for a different reason; now the mass is 
concentrated near the points of the EPO because of the flatness and strong 
focusing effect of the map near the fixed points of its branches: Trajectories 
are repeatedly fed into the EPO from these fixed points, but no precise 
condition for purely singular measures is yet known for this nonlinear, 
overlapping case. 

We have studied relaxation in the Cantor-set regime of the linear map 
using a discrete Markov-chain model. This demonstrates the way in which 
mass is swept irreversibly out of the gap hierarchy in the Cantor set; this 
annihilation cascade shows anomalies in the decay of the density. In 
contrast, the moments for density distributed on the gaps display exponen- 
tial decay. This mixture of standard and anomalous features in the discrete 
case has important implications for the dynamics under the FP operator 
on the real line. 

For  the nonlinear map new features arise: In particular, trapping 
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induced by tangent bifurcation appears when the quartic potential acquires 
of local cubic inflection as two real roots collide. This trapping effect allows 
a "chemical reaction" description. In the parameter regime studied this 
"kinetics" is described as a first-passage-time problem. 

This study demonstrates the variety of dynamical phenomena that can 
be produced by driving a simple deterministic system that responds slowly 
to a periodic dichotomous noise process. These phenomena are amenable 
to experimental verification in many physical systems. 
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